Experimental study of the out-of-band emission from laser produced Sn plasma

H. Nishimura, S. Fujioka, H. Sakaguchi, S. Namba¹, M. Shimomura, Y. Nakai, T. Aota, H. Tanuma², H. Ohashi, S. Suda, A. Sunahara³, T. Kai, K. Nishihara, N. Miyanaga, Y. Izawa, and K. Mima

Institute of Laser Engineering, Osaka University

¹ Hiroshima University

- ² Tokyo Metropolitan University
- ³ Institute for Laser Technology

This work is performed under the auspices of Leading Project promoted by MEXT (Japanese Ministry of Education, Culture, Sports, Science and Technology).

It is highly requested to clarify physics of OoB emission and provide experimental databases on it.

Joint requirement (EUV source WS/2006.5)

ILE Osaka

130 - 400 nm: < 3 - 7 % (< 1% on wafer)

> 400 nm: < 0.3 - 3% (< 10 ~ 100% on wafer)

The minimum numbers of Sn atoms necessary for EUV pulse generation is $10^{14} \sim 10^{15}$. In other words, remaining mass can be a source of OoB emission.

EUV conversion efficiencies show no geometrical dependence for a give Sn mass.

Angular distribution of OoB emission is rather isotropic. This result was used to derive absolute OoB energy.

angular distribution

@130-550 nm, 8 ns pulse

- O 1-mm-thick bulk Sn
- □ 1-μm-thick Sn-coated plate
- Δ 1- μ m-thick Sn-coated sphere

Sn target:

- 1-mm-thick plate
- 1-μm-thick plate
- **1-μm-thick coat sphere**

Dependence of OoB emission on target structures and sizes were investigated to identify the source region

ILE Osaka

Typical spectra from SN spectrograph and TG-CCD

from SN spectrograph

from TG-CCD

Size of OoB emission region is much wider for planar targets than those for spherical targets, inferring the source of OoB is in the surroundings of laser-spot.

ILE Osaka

For 8-ns pulse drive, OoB emission energy from spherical targets is 20% or less of those from planar targets

OoB sepctra for 8-ns drive

fitting to Planck spectrum infers $T_R \sim 5 \text{ eV}$

Further reduction of 40% is possible with decrease in the thickness of overcoat from 1 to 0.1 μm .

For 2-ns pulse drive, OoB emission energy from spherical targets is less than 25% of those from planar targets

OoB sepctra for 2-ns drive

Further reduction of 50% is possible with decrease in the thickness of overcoat from 1 to 0.1 μm .

With decrease in Sn thickness and drive-pulse-duration, ratio of energy included in OoB emission to that in the in-band is substantially reduced.

*reduction by the first-collection mirror is not included.

Spectral shape of OoB and reflectivity curve of collection mirror provide effective reflectivity of 31.5% for the 130-400 nm range.

Sn 0.1 μ m sphere w/ 2 ns pulse

Energy of OoB emission, in the range of 100 - 400 nm, is 2.78 mJ@source, corresponding to 1.14 mJ@IF or 22.1 % of 13.5-nm EUV. That is about three-times of the joint requirement value of 3-7%

Summary

Out-of-band (OoB) mission spectra in the VUV region (110-400 nm) was absolutely measured for laser produced Sn plasma.

- 1. With decrease in Sn overcoat thickness and duration of drive laser-pulse, OoB emission substantially decreases whereas conversion to the in-band is kept constant.
- 2. With decrease in target size down to that of the laser spot, OoB emission decreases, inferring the major source of OoB is in surroundings of the laser spot.
- 3. Emission energy in the 130-400 nm range at IF point is evaluated to be 22% of 13.5 nm EUV.

Use of minimum-mass target enables us to mitigate not only debris but also OoB emission.

